Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AoB Plants ; 11(2): plz010, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31044057

RESUMO

Rapid local adaptation frequently occurs during the spread of invading species. It remains unclear, however, how consistent, and therefore potentially predictable, such patterns of local adaptation are. One approach to this question is to measure patterns of local differentiation in functional traits and plasticity levels in invasive species in multiple regions. Finding consistent patterns of local differentiation in replicate regions suggests that these patterns are adaptive. Further, this outcome indicates that the invading species likely responds predictably to selection along environmental gradients, even though standing genetic variation is likely to have been reduced during introduction. We studied local differentiation in the invasive annual plant Erodium cicutarium in two invaded regions, California and Chile. We collected seeds from across strong gradients in precipitation and temperature in Mediterranean-climate parts of the two regions (10 populations per region). We grew seeds from maternal families from these populations through two generations and exposed the second generation to contrasting levels of water and nutrient availability. We measured growth, flowering time and leaf functional traits across these treatments to obtain trait means and plasticity measures. We found strong differentiation among populations in all traits. Plants from drier environments flowered earlier, were less plastic in flowering time and reached greater size in all treatments. Correlations among traits within regions suggested a coordinated evolutionary response along environmental gradients associated with growing season length. There was little divergence in traits and trait intercorrelations between regions, but strongly parallel divergence in traits within regions. Similar, statistically consistent patterns of local trait differentiation across two regions suggest that local adaptation to environmental gradients has aided the spread of this invasive species, and that the formation of ecotypes in newly invaded environments has been relatively consistent and predictable.

2.
AoB Plants ; 10(1): ply009, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29497480

RESUMO

Germination, a crucial phase in the life cycle of a plant, can be significantly influenced by competition and facilitation. The aim of this study was to test whether differences in cover of surrounding vegetation can lead to population differentiation in germination behaviour of an annual grassland species, and if so, whether such a differentiation can be found in the native as well as in the introduced range. We used maternal progeny of Erodium cicutarium previously propagated under uniform conditions that had been collected in multiple populations in the native and two introduced ranges, in populations representing extremes in terms of mean and variability of the cover of surrounding vegetation. In the first experiment, we tested the effect of germination temperature and mean cover at the source site on germination, and found interlinked effects of these factors. In seeds from one of the introduced ranges (California), we found indication for a 2-fold dormancy, hindering germination at high temperatures even if physical dormancy was broken and water was available. This behaviour was less strong in high cover populations, indicating cross-generational facilitating effects of dense vegetation. In the second experiment, we tested whether spatial variation in cover of surrounding vegetation has an effect on the proportion of dormant seeds. Contrary to our expectations, we found that across source regions, high variance in cover was associated with higher proportions of seeds germinating directly after storage. In all three regions, germination seemed to match the local environment in terms of climate and vegetation cover. We suggest that this is due to a combined effect of introduction of preadapted genotypes and local evolutionary processes.

3.
Am J Bot ; 100(10): 1923-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24061214

RESUMO

PREMISE: Ginkgo, centrally placed in seed plant phylogeny, is considered important in many phylogenetic and evolutionary studies. Shoot dimorphism of Ginkgo has been long noted, but no work has yet been done to evaluate the relationships between overall branch architecture and wood ring characters, shoot growth, and environmental conditions. • METHODS: Branches, sampled from similar canopy heights, were mapped with the age of each long shoot segment determined by counting annual leaf-scar series on its short shoots. Transverse sections were made for each long shoot segment and an adjacent short shoot; wood ring thickness, number of rings, and number of tracheids/ring were determined. Using branch maps, we identified wood rings for each long shoot segment to year and developmental context of each year (distal short shoot growth only vs. at least one distal long shoot). Climate data were also analyzed in conjunction with developmental context. • KEY RESULTS: Significantly thicker wood rings occur in years with distal long shoot development. The likelihood that a branch produced long shoots in a given year was lower with higher maximum annual temperature. Annual maximum temperature was negatively correlated with ring thickness in microsporangiate trees only. Annual minimum temperatures were correlated differently with ring thickness of megasporangiate and microsporangiate trees, depending on the developmental context. There were no significant effects associated with precipitation. • CONCLUSIONS: Overall, developmental context alone predicts wood ring thickness about as well as models that include temperature. This suggests that although climatic factors may be strongly correlated with wood ring data among many gymnosperm taxa, at least for Ginkgo, correlations with climate data are primarily due to changes in proportions of shoot developmental types (LS vs. SS) across branches.


Assuntos
Ginkgo biloba/anatomia & histologia , Brotos de Planta/anatomia & histologia , Brotos de Planta/fisiologia , Madeira/anatomia & histologia , Análise de Variância , Clima , Ginkgo biloba/crescimento & desenvolvimento , Ginkgo biloba/ultraestrutura , Modelos Logísticos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/ultraestrutura , Temperatura , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Madeira/ultraestrutura
4.
Oecologia ; 170(3): 659-67, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22707035

RESUMO

The ability of plant species to colonize new habitats and persist in changing environments depends on their ability to respond plastically to environmental variation and on the presence of genetic variation, thus allowing adaptation to new conditions. For invasive species in particular, the relationship between phenotypic trait expression, demography, and the quantitative genetic variation that is available to respond to selection are likely to be important determinants of the successful establishment and persistence of populations. However, the magnitude and sources of individual demographic variation in exotic plant populations remain poorly understood. How important is plasticity versus adaptability in populations of invasive species? Among environmental factors, is temperature, soil nutrients, or competition most influential, and at what scales and life stages do they affect the plants? To investigate these questions we planted seeds of the exotic annual plant Erodium brachycarpum into typical pasture habitat in a spatially nested design. Seeds were drawn from 30 inbred lines to enable quantification of genetic effects. Despite a positive population growth rate, a few plants (0.1 %) produced >50 % of the seeds, suggesting a low effective population size. Emergence and early growth varied by genotype, but as in previous studies on native plants, environmental effects greatly exceeded genetic effects, and survival was unrelated to genotype. Environmental influences shifted from microscale soil compaction and litter depth at emergence through to larger-scale soil nutrient gradients during growth and to competition during later survival and seed production. Temperature had no effect. Most demographic rates were positively correlated, but emergence was negatively correlated with other rates.


Assuntos
Variação Genética , Geraniaceae/fisiologia , California , Ecossistema , Interação Gene-Ambiente , Geraniaceae/genética , Espécies Introduzidas , Mortalidade , Densidade Demográfica , Crescimento Demográfico , Sementes/genética , Sementes/crescimento & desenvolvimento , Solo , Temperatura
5.
J Diabetes Sci Technol ; 4(3): 636-44, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20513330

RESUMO

BACKGROUND: Glucose management in an intensive care unit (ICU) is labor-intensive. A continuous glucose monitoring system (CGMS) has the potential to improve efficiency and safety in this setting. The goal of this study was to determine if the Medtronic Guardian REAL-Time CGMS was accurate and tolerated by patients in a rural hospital ICU unit. METHOD: Differences between individual finger stick blood glucose (FSBG) and CGMS values were compared to American Diabetes Association (ADA) and International Organization for Standardization (ISO) standards. Continuous glucose monitoring system accuracy was evaluated over four ranges: <75, 75-140, 140-200, and >200 mg/dl. Other accuracy measures [mean absolute deviation (MAD), mean absolute relative difference (MARD), and coefficient of linear regression of CGMS on FSBG] were calculated. Nursing staff and patients were surveyed regarding use of the CGMS in the ICU. RESULTS: Twenty-nine participants had 320 FSBG and corresponding CGMS readings. Sixty-two percent of participants were admitted with diabetic ketoacidosis (DKA). Two hundred and thirteen (66.6%) were accurate within the ISO standard, whereas only 70 out of 320 (21.9%) were within the 5% ADA standard. The CGMS was most accurate in euglycemia. Technical difficulties, such as adequate time for "wetting" and calibration of electrodes, arose with the sensors. The MAD was 28.3 mg/dl, the MRAD was 17.4%, and the linear regression coefficient of CGMS on FSBG was 0.834 (p < 0.001). CONCLUSIONS: The CGMS is well tolerated by ICU patients but, at present, is not sufficiently accurate to be used for therapeutic decisions in the acute setting, particularly in patients with diabetic ketoacidosis. There is a need to find resolution to the technical issues regarding electrode "wetting" and calibration if CGMS use in the ICU setting is to provide an effective means of diabetes care and management.


Assuntos
Glicemia/análise , Monitorização Fisiológica/instrumentação , Serviços de Saúde Rural , Adulto , Idoso , Idoso de 80 Anos ou mais , Falha de Equipamento , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/métodos , Projetos Piloto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...